[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Guggulipid ameliorates adjuvant-induced arthritis and liver oxidative damage by suppressing inflammatory and oxidative stress mediators.

Sundaram, M. S. and Manoj Kumar, Neog and Mahaboobkhan, Rasool and Suresh Kumar, G. (2019) Guggulipid ameliorates adjuvant-induced arthritis and liver oxidative damage by suppressing inflammatory and oxidative stress mediators. Phytomedicine, 64. p. 152924. ISSN 1618-095X

[img] PDF
Phytomedicine 64 (2019) 152924.pdf - Published Version
Restricted to Registered users only

Download (3MB) | Request a copy


Background: Arthritis is a common degenerative joint disease characterized by deterioration of articular cartilage, subchondral bone, and associated with immobility, pain and inflammation. The incessant action of reactive oxygen species (ROS) during progressive arthritis causes severe oxidative damage to vital organs and circulatory system. Purpose: In this study we investigated the ability of guggulipid (GL), a lipid rich extract from the gum resin of the plant Commiphora whighitii to suppress the progressive arthritis and associated liver oxidative stress both in vivo and in vitro. Study design/Methods: The anti-arthritic ability of GL was demonstrated in vitro using IL-1β stimulated bovine nasal cartilage model and in vivo Freund's complete adjuvant-induced arthritic rat model. Collagen/proteoglycan degradation and pro-inflammatory mediators were monitored in the harvested culture medium of nasal cartilage by estimating the levels of matrix metalloproteinases (MMPs), hydroxy proline, glycosaminoglycans and inflammatory mediators. Further, anti-arthritic ability of GL was evaluated in vivo by measuring enzymatic and non-enzymatic mediators of cartilage degradation, inflammation and oxidative stress markers. Results: GL significantly inhibited the IL-1β stimulated cartilage degradation in vitro by mitigating the MMPs activity, collagen degradation and secretion of pro-inflammatory mediators. Further, GL significantly reduced the adjuvant-induced paw swelling and body weight loss in vivo. GL remarkably reduced the MMPs and hyaluronidases activities in serum and bone homogenate along with altered hematological parameters. GL also mitigated the elevated bone resorbing enzymes cathepsins, exoglycosidases and phosphatases. Additionally, GL effectively mitigated ROS and oxidative stress-mediators recuperating the altered serum/liver oxidative stress and liver damage incurred during arthritic progression. Conclusion: In summary, the study clearly demonstrates the protective efficacy of GL against arthritis and its associated oxidative stress, particularly, liver oxidative damage. Hence, GL could be a potential alternative and complementary medicine to treat inflammatory joint diseases

Item Type: Article
Uncontrolled Keywords: Arthritis Oxidative stress Inflammation Guggulipid Cartilage Liver-damage
Subjects: 500 Natural Sciences and Mathematics > 10 Plants
500 Natural Sciences and Mathematics > 07 Life Sciences > 03 Biochemistry & Molecular Biology > 11 Lipid Biochemistry
Divisions: Dept. of Biochemistry
Depositing User: Food Sci. & Technol. Information Services
Date Deposited: 25 Nov 2020 10:32
Last Modified: 25 Nov 2020 10:32
URI: http://ir.cftri.com/id/eprint/14643

Actions (login required)

View Item View Item