[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Xanthine scaffold: scope and potential in drug development.

Nivedita, Singh and Shrestha, A. K. and Thakur, M. S. and Sanjukta, Patra (2018) Xanthine scaffold: scope and potential in drug development. Heliyon, 4. pp. 1-38.

[img] PDF
Heliyon 4 (2018) e00829.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Request a copy

Abstract

Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, antimicrobial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.

Item Type: Article
Uncontrolled Keywords: Pharmaceutical chemistry, Natural product chemistry
Subjects: 500 Natural Sciences and Mathematics > 04 Chemistry and Allied Sciences > 02 Alkaloids Chemistry
600 Technology > 03 Agriculture > 04 Medicinal Plants
Divisions: Fermentation Technology and Bioengineering
Depositing User: Food Sci. & Technol. Information Services
Date Deposited: 10 Jan 2019 06:29
Last Modified: 10 Jan 2019 06:29
URI: http://ir.cftri.com/id/eprint/13894

Actions (login required)

View Item View Item